Abstract
The aim of this paper is to propose a new hybrid data mining model based on combination of various feature selection and ensemble learning classification algorithms, in order to support decision making process. The model is built through several stages. In the first stage, initial dataset is preprocessed and apart of applying different preprocessing techniques, we paid a great attention to the feature selection. Five different feature selection algorithms were applied and their results, based on ROC and accuracy measures of logistic regression algorithm, were combined based on different voting types. We also proposed a new voting method, called if_any, that outperformed all other voting methods, as well as a single feature selection algorithm's results. In the next stage, a four different classification algorithms, including generalized linear model, support vector machine, naive Bayes and decision tree, were performed based on dataset obtained in the feature selection process. These classifiers were combined in eight different ensemble models using soft voting method. Using the real dataset, the experimental results show that hybrid model that is based on features selected by if_any voting method and ensemble GLM + DT model performs the highest performance and outperforms all other ensemble and single classifier models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.