Abstract
This article aims to achieve families of new traveling wave solutions to the (2 + 1)-dimensional nonlinear evolution equation using three powerful analytical techniques: the general form of Kudryashov’s method, the Bernoulli sub-ODE method, and the extended direct algebraic method. Moreover, we use several graphics to highlight our findings. The resulting traveling wave solutions are presented by hyperbolic, trigonometric, rational, and exponential functions. Bright, dark, periodic, and singular soliton solutions are introduced, and the obtained solutions are critical in explaining the wave dynamics in various models. The main findings and graphs indicate that the used approaches are the most appropriate for solving the given model, which generated several deferent solutions. Moreover, the dynamics of the model’s produced solutions may be controlled by adjusting the values of the model’s parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.