Abstract
The influence of hydroxy-functionalized hyperbranched poly(ester-amide) (HBP) of different molecular weight on the curing process of diglycidylether of bisphenol A (DGEBA) was studied using methyltetrahydrophthalic anhydride (MTHPA) as curing agent. By Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) the curing reaction was monitored and the covalent incorporation of the modifier in the matrix was proved. By thermomechanical analysis (TMA) the reduction of the contraction after gelation on changing the HBP proportion was observed. The incorporation of HBP increased the glass transition temperature ( T g) and reduced the overall shrinkage. The modified materials showed a higher thermal degradability than neat DGEBA thermosets allowing reworkability. Thermal expansion coefficient, Young’s modulus, impact strength and microhardness were improved. The water uptake behavior was also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.