Abstract

This study presents a new microbial lipolytic enzyme GD-95RM designed via random mutagenesis using previously characterized GD-95 lipase as a template. The improvement in activity of GD-95 lipase was caused by E100K, F154V and V174I mutations. Compared with GD-95 lipase, the GD-95RM lipase had 1.3-fold increased specific activity (2000 U/mg), demonstrated resistance to higher temperatures (75-85°C), had fourfold increased Vmax towards p-NP dodecanoate and showed 2.5-fold lower KM for p-NP butyrate. It retained > 50% of its lipolytic activity when hydrolyzing short, medium and long acyl chain substrates at 30°C and 55°C reaction temperatures after 20days' incubation with 25% of ethanol. GD-95RM also displayed long-term tolerance (40 d) to 5% NaCl, trisodium citrate, sodium perborate, urea, 0.1% boric acid, citric acid and Triton X-100. Moreover, oil hydrolysis and transesterification results revealed the capability of GD-95RM lipase to produce fatty acids or fatty acid esters through eco-friendly hydrolysis and transesterification reactions using a broad range of vegetable and fish oils, animal fat and different alcohols as substrates. GD-95RM lipase was successfully applied in synthesis reactions for ethyl oleate, octyl oleate and isoamyl oleate without giving to use additional reaction compounds or special reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.