Abstract

The issues discussed in the article refer to a new category of military operations - electronic warfare (EW). In the context of EW, the high-power microwave (HPM) technology currently enables remote disturbances of operations lasting until the circuit is reset or the electronic system is destroyed. The article examines the problem of protection and defence against using HPM pulses. The research used a compact HPM generator developed at the Polish National Centre for Nuclear Research. It has a power of 3MW, an operating frequency of 2.9 GHz and a 3 μs pulse duration, emitted with a repetition rate of 1, 50, 100 and 250 Hz. The developed HPM pulse protection systems were subjected to intense field exposure in the open space of the training ground, in its land and sea sections, and in the circuit with a reverberation chamber. The distribution of the generated field on each measurement station was tested using a high-power D-dot probe, from which the data was transferred to the recording system via an optical fibre link. In all cases, this distribution turned out to be repetitive. The field probe with a logger was used for measurements inside composite structures. Unprotected electronic systems in hobby drones, mobile phones, cameras and systems using sensors based on micro-mechanical units were exposed. An analysis was conducted to check the operation of electronic circuits, effects caused and phenomena occurring during exposures to intense microwave radiation. It was found that the developed system meets the design assumptions in conditions similar to actual exposure to HPM weapons. Screening efficiency has been determined for various spatial configurations of radiation beam incidence. The presented systems for the protection and defence against the effects of HPM weapons implemented in the technology of composite hybrid absorbers enable effective elimination of electromagnetic pulse effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.