Abstract
The simultaneous detection of relevant metabolites in living organisms by using one molecule introduces an approach to understanding the relationships between these metabolites in healthy and deregulated cells. Fluorescent probes of low toxicity are remarkable tools for this type of analysis of biological systems in vivo. As a proof of concept, different naturally occurring compounds, such as biothiols and phosphate anions, were the focus for this work. The 2,4-dinitrobenzenesulfinate (DNBS) derivative of 9-[1-(4-tert-butyl-2-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (Granada Green; GG) were designed and synthesized. This new sulfinyl xanthene derivative can act as a dual sensor for the aforementioned analytes simultaneously. The mechanism of action of this derivative implies thiolysis of the sulfinyl group of the weakly fluorescent DNBS-GG by biological thiols at near-neutral pH values, thus releasing the fluorescent GG moiety, which simultaneously responds to phosphate anions through its fluorescence-decay time. The new dual probe was tested in solution by using steady-state and time-resolved fluorescence and intracellularly by using fluorescence-lifetime imaging microscopy (FLIM) in human epithelioid cervix carcinoma (HeLa) cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.