Abstract
Development of optimal design methods for parallel manipulators is important in obtaining an optimal architecture or pose for the best kinetostatic performance. The use of performance indexes such as the condition number of the conventional Jacobian matrix that is composed of nonhomogeneous physical units, however, may lack in physical significance. In order to avoid the unit inconsistency problem in the conventional Jacobian matrix, we present a new formulation of a dimensionally homogeneous Jacobian matrix for parallel manipulators with a planar mobile platform by using three end-effector points that are coplanar with the mobile platform joints. The condition number of the new Jacobian matrix is then used to design an optimal architecture or pose of parallel manipulators for the best dexterity. An illustrative design example with a six-degree-of-freedom Gough-Stewart platform parallel manipulator by using the proposed formulation is shown to generate the same optimal configurations as those from using the other existing dimensionally homogenous Jacobian formulation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.