Abstract

Several alternative design features of large acceptance, gas ionization detectors have proven to be successful for application to elastic recoil detection analysis (ERDA). In particular, effects due to the distortion of the entrance field by a large area window have been eliminated in a simple fashion, to allow measurement of the initial rate of energy loss and to provide an energy- and species-independent cathode signal. No less importantly, use of a divided electrode in the anode plane has enabled a more straightforward means of determining the scattering angle that is required for kinematic corrections. An intermediate grid was found to provide a direct and true total energy signal, with only slightly diminished resolution compared with that of the summed total anode equivalent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.