Abstract

In this work a novel Cu nanostructured electrode is presented. Cu tilted nanocolumnar and porous thin films have been prepared by physical vapor deposition (PVD) in an oblique angle configuration and characterized by different techniques. Cyclic voltammetry and amperometry were used to study the sensing ability of the copper films deposited on ITO to quantitatively determine glucose and to optimize the experimental conditions of detection. Scanning electron microscopy data revealed that the film microstructure consists of tilted nanocolumns of around 70nm of diameter and an inclination of 65° with respect to the surface normal that extend through the total thickness of the layer of ca. 300nm. X ray photoelectron spectroscopy and Raman, used to determine the oxidation state of Cu, revealed that an oxy/hydroxide external layer formed around the nanocolumns is the active phase responsible for the electrocatalytic detection of glucose. Under optimized conditions, the CuO/Cu nanoporous/ITO electrode presented a sensitivity of 1.41Amoldm−3cm−2 (R2:0.999) with a limit of detection of 0.36μmoldm−3 and a reproducibility of 3.42%.The selectivity of the proposed sensor was checked against various interferences, including physiological compounds, different sugars and ethanol, thereby showing excellent anti-interference properties. The CuO/Cu nanoporous/ITO electrode was also used successfully to determine glucose in blood samples showing a performance comparable to that of a commercial glucometer. An extended working range covering from 1 to 5×10−3moldm−3 was determined for these sensor films which, in this way, could be applied for different analytical purposes including agro industrial liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.