Abstract

Engineering tolerance plays an important role in the process capability analysis for determining whether a manufacturing process is capable of making good quality products. In contrast with the engineering tolerance region in a multivariate manufacturing process, the multidimensional machining process or the nano-cutting process has a special engineering tolerance called the positional tolerance. Positional tolerance is a special type of geometric dimensioning and tolerancing which describes the tolerance region between the actual location of machining results and the target location. In the past few years, several capability indices have been developed for measuring the performance of a multidimensional machining process under the assumption that the variances of machining results on different directions are equal. However, this assumption may not be true in most practical situations. In this paper, we propose three novel capability indices for measuring the performance of a multidimensional machining process under the assumption that the variances of machining results on different directions may not be equal. The statistical properties of the point estimators and their confidence intervals for the new capability indices are derived. Both the simulation results and numerical examples show that the new capability indices outperform the predecessors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.