Abstract

This paper presents a new boundary condition for designing phase legs when using the decoupling capacitance method. New SiC MOSFETs have much higher short-circuit currents—over 14X datasheet rating—then comparable Si IGBT devices. The energy draw on the decoupling capacitance due to this can be a large step input that over-voltages the device if not accounted for. Decoupling capacitance requirements have previously been based on switching conditions during normal operation and may not be sufficient for high current devices or modules. Furthermore, fast protection work has focused on lower current discrete devices whereas this issue becomes more prevalent in higher current configurations. Analysis of device over-voltage during short-circuit events is presented along with new sizing guidelines for DC link decoupling capacitance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.