Abstract

We present a new grid of stellar model calculations for stars on the Asymptotic Giant Branch between 1.0 and . Our grid consists of 10 chemical mixtures with 5 metallicities between and , and with both solar-like and <i>α<i/>-element enhanced metal ratios for each metallicity. We treat consistently the carbon-enhancement of the stellar envelopes by using opacity tables with varying C/O-ratio and by employing theoretical mass loss rates for carbon stars. The low temperature opacities have been calculated specifically for this project. For oxygen stars we use an empirical mass loss formalism. The third dredge-up is naturally obtained by including convective overshooting. Our models reach effective temperatures in agreement with earlier synthetic models, which included approximative carbon-enriched molecular opacities and show good agreement with empirically determined carbon-star lifetimes. A fraction of the models could be followed into the post-AGB phase, for which we provide models in a mass range supplementing previous post-AGB calculations. Our grid constitutes the most extensive set of AGB-models, calculated with the latest physical input data and treating carbon-enhancement due to the third dredge-up most consistently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.