Abstract
DNA-based approaches to the discovery of genes contributing to the development of type 2 diabetes have not been very successful despite substantial investments of time and money. The multiple gene-gene and gene-environment interactions that influence the development of type 2 diabetes mean that DNA approaches are not the ideal tool for defining the etiology of this complex disease. Gene expression-based technologies may prove to be a more rewarding strategy to identify diabetes candidate genes. There are a number of RNA-based technologies available to identify genes that are differentially expressed in various tissues in type 2 diabetes. These include differential display polymerase chain reaction (ddPCR), suppression subtractive hybridization (SSH), and cDNA microarrays. The power of new technologies to detect differential gene expression is ideally suited to studies utilizing appropriate animal models of human disease. We have shown that the gene expression approach, in combination with an excellent animal model such as the Israeli sand rat (Psammomys obesus), can provide novel genes and pathways that may be important in the disease process and provide novel therapeutic approaches. This paper will describe a new gene discovery, beacon, a novel gene linked with energy intake. As the functional characterization of novel genes discovered in our laboratory using this approach continues, it is anticipated that we will soon be able to compile a definitive list of genes that are important in the development of obesity and type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.