Abstract

Tolman's electronic parameter (TEP) derived from the A1-symmetrical CO stretching frequency of nickel-phosphine-tricarbonyl complexes, R3PNi(CO)3, is brought to a new, improved level by replacing normal with local vibrational frequencies. CO normal vibrational frequencies are always flawed by mode-mode coupling especially with metal-carbon stretching modes, which leads to coupling frequencies as large as 100 cm(-1) and can become even larger when the transition metal and the number of ligands is changed. Local TEP (LTEP) values, being based on local CO stretching force constants rather than normal mode frequencies, no longer suffer from mode coupling and mass effects. For 42 nickel complexes of the type LNi(CO)3, it is shown that LTEP values provide a different ordering of ligand electronic effects as previously suggested by TEP and CEP values. The general applicability of the LTEP concept is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.