Abstract

The immobilization and encapsulation of glucose oxidase (GOD) onto the mesoporous and the non-porous silica spheres prepared by co-condensation of tetraethylorthosilicate (TEOS) and (3-aminopropyl)trimethoxysilane (APTMS) in the water-in-oil (W/O) emulsion system were studied. The terminal amine group was used as the important functionality for GOD immobilization on the silica substrate. When only TEOS is used as a silica source, the disordered mesoporous silica microspheres are obtained. As the molar ratio of APTMS to TEOS ( R AT) increases, the surface area and pore volume of the silica particles measured by nitrogen adsorption and desorption method and SEM decrease rapidly. Particularly, the largest change of the surface morphology is observed between R AT = 0.20 and R AT = 0.25. The amount and the adsorption time of immobilized enzyme were measured by UV spectroscopy. About 20 wt% of GOD was immobilized into the silica substrates above R AT = 0.60 and was completely adsorbed into the substrate of R AT = 0.80 with lapse of 4 h after addition. In the measurement of the thermal stability, GOD dissolved in buffer solution loses nearly all of its activity after 30 min at 65 °C. In contrast, GOD immobilized on the surface-modified silica particles still retains about 90% of its activity after the same treatment. At this temperature, the immobilized glucose oxidase retained half of its initial activity after 4 h. It is shown that the suitable usage of functionalizing agent like APTMS as well as the control of surface morphology is very important on the immobilization of enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.