Abstract

The paper investigates two new use cases for the Boris Spectral Deferred Corrections (Boris-SDC) time integrator for plasma simulations. First, we show that using Boris-SDC as a particle pusher in an electrostatic particle-in-cell (PIC) code can, at least in the linear regime, improve simulation accuracy compared with the standard second order Boris method. In some instances, the higher order of Boris-SDC even allows a much larger time step, leading to modest computational gains. Second, we propose a modification of Boris-SDC for the relativistic regime. Based on an implementation of Boris-SDC in the RUNKO PIC code, we demonstrate for a relativistic Penning trap that Boris-SDC retains its high order of convergence for velocities ranging from 0.5c to >0.99c.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.