Abstract

<abstract> <p>In this study, we have simulated transient and steady state free convection flow and heat transfer inside a square enclosure filled with a copper-water nanofluid of spherical shape nanoparticles following Tiwari-Das model. The cavity containing an insulated rectangular obstacle of height ranging from 0% to 50% of the cavity side-length. The vertical sides of the enclosure are kept at different temperatures, while the flat sides are assumed to be adiabatic as the obstacle. The combined method of lines/penalty-artificial compressibility technique (MOL-PACT) has been applied to solve the dimensional time dependent mathematical model after converting it into a non-dimensional structure. The combined method of lines/penalty-artificial compressibility technique is recently successfully applied to simulate free convection of MHD fluid in square enclosure with a localized heating. The extension of this promising technique for studying heat transfer of nanofluids is one of the objectives of this paper. Another objective of the study is to inspect the impact of several model parameters such as, the obstacle height, nanoparticles volume-fraction, nanoparticles radius and Rayleigh number on streamlines, temperature distribution and Nusselt number as an expression of heat transfer inside the enclosure. The results have been discussed and shown graphically. Comparisons with former results for related cases in the literature are made and reasonably good agreements are observed.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.