Abstract

To develop new phenylacetylene monomers more suitable for helix-sense-selective polymerization (HSSP) we reported previously and to improve the efficiency of the HSSP and membrane performance of the resulting polymers, novel phenylacetylenes having a flexible oligosiloxanyl group (SnBDHPA) together with the other related three series of monomers were synthesized and polymerized by using a chiral catalytic system and enantioselectivity in permeation of the membranes from the resulting chiral polymers were examined. SnBDHPA was the most suitable for the HSSP and the CD absorptions (G values) of poly(SnBDHPA) were stronger and more stable than those of the corresponding polymers having rigid alkyl groups. The polymers could be fabricated to flexible self-supporting membranes by using solvent-casting method. In addition, enantioselectivity in permeation of one of poly(SnBDHPA) membranes was much higher than that of a poly(phenylacetylene) membrane having alkyl groups. This was because the polymers having oligosiloxane groups had high regularity of structures, i.e., chemical structures of the macromolecules such as one handedness and high order structures such as columnar contents in the membranes, and the membranes were flexible and had almost no defects. These good properties as optical resolution membrane materials were caused by flexibility, hydrophobicity, and bulkiness of the oligosiloxane chains. S3BDHPA having a trisiloxanyl group was found to be the best monomer for the HSSP and for obtaining good optical resolution membrane materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.