Abstract

A large uncertainty for the slow neutron capture nucleosynthesis (s-process) models is caused by the amount of neutrons available to the process itself. This quantity is strongly affected by the 13C(α,n)16O, and 22Ne(α,n)25Mg reaction cross sections, whose measurements at energies corresponding to the s-process thermal conditions (∼102 keV) are mainly hampered by the Coulomb barrier. For this reason, indirect approaches could offer a complementary way of investigation and, among these, the Trojan Horse Method (THM) has been applied to determine these cross sections overcoming the Coulomb barrier. With this approach, a low-energy binary reaction cross section can be obtained selecting the quasi-free contribution from a suitable three-body reaction cross section, taking advantage of the cluster structure of proper nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.