Abstract

The diffraction of thermal neutrons is a powerful tool for investigations of residual stresses in various structural materials and bulk industrial products due to the non-destructive character of the method and high penetration depth of neutrons. Therefore, for conducting experiments in this research field, the neutron Fourier stress diffractometer FSD has been constructed at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). Using a special correlation technique at the long-pulse neutron source, a high resolution level of the instrument has been achieved (Δd/d ≈ 2 ÷ 4 × 10−3) over a wide range of interplanar spacing dhkl at a relatively short flight distance between the chopper and sample position (L = 5.55 m). The FSD design satisfies the requirements of a high luminosity, high resolution, and specific sample environment. In this paper, the current status of the FSD diffractometer is reported and examples of performed experiments are given.

Highlights

  • To investigate internal stresses in materials, various non-destructive methods, including X-ray diffraction, ultrasonic scanning, and a variety of magnetic methods, have been used for many years

  • The basic functional units of the FSD diffractometer are the neutron source IBR-2 reactor with comb-like water moderator-generating thermal neutron pulses of ~340 μs with a frequency of 5 Hz; the curved mirror neutron guide eliminating fast neutrons and γ-rays from the neutron beam; the fast Fourier chopper providing neutron beam intensity modulation; the straight mirror neutron guide shaping the thermal neutron beam on the sample; the detector system consisting of detectors at scattering angles of ±90◦ and a backscattering detector; a heavy-load capacity goniometer, a diaphragm

  • Another research area is the in situ study of the behavior of structural residual stress investigations in structural materials and industrial products after various technological materials under various conditions

Read more

Summary

Introduction

To investigate internal stresses in materials, various non-destructive methods, including X-ray diffraction, ultrasonic scanning, and a variety of magnetic methods (based on the measurement of magnetic induction, penetrability, anisotropy, Barkhausen effect, and magnetoacoustic effects), have been used for many years. In 1975, a new correlation method for detecting scattered neutrons, reverse time-of-flight (RTOF), was proposed [5] and successfully realized on the first RTOF Fourier diffractometer ASTACUS [6] at the FiR-1 250 kW TRIGA-reactor in the VTT Technical Research Centre (Espoo, Finland). This achievement stimulated the construction of two more Fourier diffractometers at steady state reactors: mini-SFINKS for structural investigations in PNPI (Gatchina, Russia) [7] and FSS for residual stress studies in GKSS (Geesthacht, Germany) [8,9]. A great number of experiments have been performed on the IBR-2 reactor in order to approve the method and to define the potential application domain

Residual Stress Measurements by Neutron Diffraction
Typical dependences of of
FSD Diffractometer at the IBR-2 Pulsed Reactor
Design
11. Neutron from the
19 Ni m Coating m
Results
Welding
Mechanical Properties of Structural Materials
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.