Abstract

The deuterated form of ammonium iron(III) bis (hydrogenphosphate), ND4Fe(DPO4)2, was investigated in detail from neutron powder diffraction data with a wavelength λ = 4.724 Å. The material undergoes two successive magnetic phase transitions which are associated with the Fe3+ magnetic moments. One at TC = 17.82 ± 0.05 K is attributed to the ferrimagnetic order with the magnetic moments, μFI = 4.19 ± 0.02 μB at 4 K, lying on the crystallographic plane ac. The other transition is found to be at Tt = 3.52 ± 0.05 K due to an antiferromagnetic arrangement, with an equal moment antiphase structure that is characterized by a long-period propagation vector close to k⃗AF ≈ (1/16,0,1/16) and a magnetic moment for the Fe3+ ions of μAF = 4.41 ± 0.03 μB at 1.5 K. The low symmetry of its triclinic crystal structure and the complex pattern of competing superexchange pathways seem to be responsible for the existence of this double magnetic phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.