Abstract

This study investigates the phase shift induced by Laue transmission in a perfect Si crystal blade in unprecedented detail. This `Laue phase' was measured at two wavelengths in the vicinity of the Bragg condition within a neutron interferometer. In particular, the sensitivity of the Laue phase to the alignment of the monochromator and interferometer (rocking angle) and beam divergence has been verified. However, the influence of fundamental quantities, such as the neutron-electron scattering length, on the Laue phase is rather small. The fascinating steep phase slope of 5.5° [(220) Bragg peak] and 11.5° [(440) Bragg peak] per 0.001 arcsec deviation from the Bragg angle has been achieved. The results are analysed using an upgraded simulation tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.