Abstract

This paper extends previous work to characterize neutron dosimetry in the vicinity of 252Cf brachytherapy sources. A general source is examined with an arbitrary length, diameter, and encapsulation using Monte Carlo methods. Fast neutron dosimetry and thermal neutron fluence rates were determined in a variety of clinically relevant media of varying dimensions. Applicator Tube, point source, high dose rate VariSource, and high dose rate muSelectron source geometries were analyzed. Fast neutron dosimetry was relatively independent of encapsulation thickness for an assortment of encapsulation materials less than 2 mm thick. Large variations in phantom size made minimal differences in the fast neutron dose close to the source. Specific source geometries were compared with dosimetry obtained from a simplified point model. The consequence of these results is a convenient means of accurately predicting clinical fast neutron dosimetry characteristics around a general 252Cf brachytherapy source in a variety of media without requiring neutron transport. Thermal neutron fluence rates were determined for a variety of source encapsulation materials, encapsulation thicknesses, and phantom sizes. At a distance of 3 cm from the source center, the thermal neutron fluence rate for a 30 cm diameter phantom was a 2.65 times greater than for a 10 cm diameter water phantom. These results demonstrate 252Cf thermal neutron fluence rate is relatively independent of encapsulation thickness and composition, yet highly dependent on hydrogen mass density and phantom size for phanta with diameters <30 cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.