Abstract

A thorough structure determination has been performed on Cu2ZnSnS4 nanoparticles, a popular photovoltaic material, using neutron diffraction—to characterize the long-range average crystal structure—and X-ray absorption fine structure (XAFS) spectroscopy at the Cu, Zn, and Sn K-edges to elucidate the element-specific local structure. This is the first combined multiscale approach on nanoparticles of this material. The results indicate the presence of aperiodic disorder on the cation sites that is diminished by annealing. This disorder involves local lattice distortions around the crystallographic sites rather than the presence of interstitial atoms. It is most consistent with the known antisite substitutions that are integral to CZTS (referring to the ordering of the Cu, Zn, and Sn between planes). However, instead of being confined within single unit cells so as to maintain the crystallographic symmetry, periodicity, and homogeneity, the substitutional disorder appears to extend over larger regions consis...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.