Abstract

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This article illustrates the possibility of investigating the mass hierarchy and CP-violating phase δCP in the context of CP trajectory diagrams in the biprobability plane. The separation between the normal mass hierarchy (NH) and inverted mass hierarchy (IH) CP trajectory ellipses in the P–PT plane seems to be very promising as a means of investigating the mass hierarchy. An illustration of the separation between the two hierarchy ellipses in the E–L plane is very helpful to cover all the desired baselines and beam energies and also to analyze the benefits and drawbacks in one step. If we know the mass hierarchy, then, from the large sizes of CP trajectory ellipses that are possible at appropriately long baselines (L) and at specific values of beam energy (E), it becomes possible to investigate at least narrow ranges of the CP/T-violating phase δCP. The possibility of more than one set of (θ13, δCP) parameters corresponding to any chosen coordinate in the P–PT plane, known as parameter degeneracy, may hinder the exact determination of the mass hierarchy as well as the δCP value. To circumvent this degeneracy in the (θ13, δCP) parameter space, in the case of opposite-sign solutions corresponding to the NH and IH cases, sufficiently long baselines are needed, so as to separate the opposite hierarchy ellipses to create an observable separation; in the case of same-sign solutions corresponding to either NH or IH, we need to choose an experimental configuration with L 2535 km, E 5 GeV for the n = 1 scenario. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.