Abstract

Neurotoxins include, in the most general sense, all molecules that destroy or inhibit the proper functioning of the nervous system. Neurotoxins from animals and plants include alkaloids and peptides, many of which interact with physiological processes in a selective manner. The majority of neurotoxins disrupt the transmission of signals in the nervous system by interfering with synaptic transmission. Neurotoxins can act presynaptically to inhibit the release, uptake and recycling of neurotransmitters or postsynaptically, binding to receptors on the postsynaptic membrane and preventing their activation by neurotransmitters. A class of neurotoxins from plants and animals interact with nicotinic acetylcholine receptors, either at the neuromuscular junction, peripherally at neuronal ganglia or centrally, to produce neurotoxic effects. In this article we review current knowledge of some of these neurotoxins, their structure, pharmacology, importance as pharmaceutical tools as well as future prospects for the development of therapeutic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.