Abstract
Neonatal hypoxic-ischemic encephalopathy remains the most important neurological problem of the newborn. Delays in diagnosing perinatal brain injuries are common, preventing access to acute therapies. Therefore, there is a critical need for therapeutic strategies that are beneficial when delivered beyond 24 h after birth. Here we show that Leukemia Inhibitory Factor (LIF) functions as an essential injury-induced neurotrophic cytokine in the CNS and that non-invasively administering LIF as late as 3 days after a hypoxic-ischemic insult improves neurological function. Using a mouse model of late preterm brain injury we show that astroglial and microglial/macrophage reactivity to hypoxia-ischemia was diminished at 3 days of recovery, but then exacerbated at 2 weeks of recovery in LIF haplodeficient mice. There also were significantly more CD68+/Iba-1+ cells in the ipsilateral striatum in LIF-Het mice compared to WT mice at 2 weeks of recovery. This desynchronized glial response was accompanied by increased neuronal cell death in the striatum and neocortex (Fluorojade C), hypomyelination (reduced MBP staining and thinner external capsule), increased extent of brain damage (Nissl) and diminished neurological function on sensorimotor tests. To our surprise, injured LIF-Het mice had ~7-fold higher IGF-1 levels than injured WT mice at 3 days after HI injury. Intranasally administered LIF activated the Jak-Stat-3 pathway both within the subventricular zone and the neocortex at 30 min after administration. When delivered with a delay of 3 days after the insult, intranasal LIF reduced the extent of brain injury by ~60%, attenuated astrogliosis and microgliosis in striatum, improved subcortical white matter thickness, increased numbers of Olig2+ cells in corpus callosum and improved performance on sensorimotor tests at 2 weeks of recovery. These studies provide key pre-clinical data recommending LIF administration as a neuroprotectant and regenerative cytokine and they highlight the feasibility of pursuing new therapeutics targeting the tertiary phase of neurodegeneration for hypoxic-ischemic encephalopathies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.