Abstract

High-altitude exposure induces the decline of spatial manipulation such as mental rotation which is limited by working memory capacity, but the underlying neuropsychological effect remains to be identified. We evaluated the mental rotation task and the contralateral delay activity (CDA) task under hypoxia environment using the event-related potential. When compared with the controls, the behavior response was slowed on two tasks in the high-altitude group. The declined mental rotation and the decreased working memory capacity were synchronously related to the amplitudes of P50 and CDA, respectively. The P50 during mental rotation was positively correlated to that of rotation-related negativity (RRN) component, so was with the CDA. Time-frequency analysis showed that the beta/alpha power in mental rotation and the theta/alpha/beta power in CDA were enhanced in the high-altitude group. The present study might suggest that the decline of working memory capacity induced poor performance of mental rotation, which may be derived from a bottom-up sensory gating deficit reflected by P50.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.