Abstract

ObjectiveThe present study aimed to determine if hypothermia augments the neuroprotection conferred by MSC administration by providing a conducive micro-environment. MethodsSprague-Dawley rats were subjected to 1.5 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion for molecular analyses, as well as 1, 14 and 28 days for brain infarction or functional outcomes. Rats were treated with either MSC (1 × 105), LCI (cold saline, 0.6 ml/min, 5 min) or both. Brain damage was determined by Infarct volume and neurological deficits. Long-term functional outcomes were evaluated using foot-fault and Rota-rod testing. Human neural SHSY5Y cells were investigated in vitro using 2 h oxygen-glucose deprivation (OGD) followed by MSC with or without hypothermia (HT) (34 °C, 4 h). Mitochondrial transfer was assessed by confocal microscope, and cell damage was determined by cell viability, ATP, and ROS level. Protein levels of IL-1β, BAX, Bcl-2, VEGF and Miro1 were measured by Western blot following 6 h and 24 h of reperfusion and reoxygenation. ResultsMSC, LCI, and LCI + MSC significantly reduced infarct volume and deficit scores. Combination therapy of LCI + MSC precipitated better long-term functional outcomes than monotherapy. Upregulation of Miro1 in the combination group increased mitochondrial transfer and lead to a greater increase in neuronal cell viability and ATP, as well as a decrease in ROS. Further, combination therapy significantly decreased expression of IL-1β and BAX while increasing Bcl-2 and VEGF expression. ConclusionTherapeutic hypothermia upregulated Miro1 and enhanced MSC mitochondrial transfer-mediated neuroprotection in ischemic stroke. Combination of LCI with MSC therapy may facilitate clinical translation of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.