Abstract

The space medicine literature reports changes in neurological systems of astronauts after spaceflight, which has caused understandable concern. Rehabilitative medicine provides a preliminary context to address these changes and creative efforts in preflight training and post-flight remediation have resulted. Research can now begin to determine the neurological changes that are most and least debilitating, the most and least reversible, and which can be tolerated as an adaptation to space. It is not yet known which changes will require remediation with the help of human enhancements, or the type (genetic, pharmacological, prosthetic) when crew venture on long voyages to Mars, the asteroids, and outer planets. Absent from the discussion to date is the biological basis for neuroplastic changes in spaceflight—genetic, developmental, and evolutionary—especially insights from genomics experts and paleobiologists that suggest advantages. Humans are flexible, adaptive, and in many ways, well suited for space with the help of enhancements. Their neurological plasticity provides an almost unique foundation in the animal kingdom for genetic engineering, medication management, and remediation, so enhancements can be integrated naturally into human bodies, lives, and work. Here, the authors explore the nature of human neuroplasticity as a foundation for use of human enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.