Abstract
Cachexia occurs in various inflammatory diseases and is characterized by weight loss and muscle wasting. Pro-inflammatory cytokines modulate the activity of neuropeptides and hormones that control energy homeostasis and/or illness behaviors. This review summarizes recent (published within the past 18 months) literature regarding neuropeptides and hormones that have been implicated in the pathophysiology of cachexia, and that are likely to have therapeutic potential for preventing or reversing cachexia in various disease states. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons are downstream targets for pro-inflammatory cytokines. Genetic or pharmacological blockade of melanocortin receptor signaling preserves lean body mass and attenuates anorexia in experimental models of cachexia. Orally available melanocortin receptor antagonists have been developed and tested in cachectic animals with favorable results. Ghrelin and ghrelin mimetics increase appetite and preserve lean body mass in cachectic patients with diverse underlying diseases. Additional neuropeptide-expressing neurons in the hypothalamus (e.g., orexin neurons) might play a role in cachexia-associated lethargy. Promising outcomes from recent preclinical studies and/or early clinical trials with melanocortin receptor antagonists and ghrelin mimetics raise hopes that safe and effective anti-cachexia drugs will soon become available for widespread clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Opinion in Supportive & Palliative Care
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.