Abstract

It is shown how a system consisting of two neuronlike adaptive elements can solve a difficult learning control problem. The task is to balance a pole that is hinged to a movable cart by applying forces to the cart's base. It is argued that the learning problems faced by adaptive elements that are components of adaptive networks are at least as difficult as this version of the pole-balancing problem. The learning system consists of a single associative search element (ASE) and a single adaptive critic element (ACE). In the course of learning to balance the pole, the ASE constructs associations between input and output by searching under the influence of reinforcement feedback, and the ACE constructs a more informative evaluation function than reinforcement feedback alone can provide. The differences between this approach and other attempts to solve problems using neurolike elements are discussed, as is the relation of this work to classical and instrumental conditioning in animal learning studies and its possible implications for research in the neurosciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.