Abstract

While animal and human decision strategies are typically explained by model-free and model-based reinforcement learning (RL), their choice sequences often follow simple procedures based on working memory (WM) of past actions and rewards. Here, we address how working memory-based choice strategies, such as win-stay-lose-switch (WSLS), are represented in the prefrontal and motor cortico-basal ganglia loops by simultaneous recording of neuronal activities in the dorsomedial striatum (DMS), the dorsolateral striatum (DLS), the medial prefrontal cortex (mPFC), and the primary motor cortex (M1). In order to compare neuronal representations when rats employ working memory-based strategies, we developed a new task paradigm, a continuous/intermittent choice task, consisting of choice and no-choice trials. While the continuous condition (CC) consisted of only choice trials, in the intermittent condition (IC), a no-choice trial was inserted after each choice trial to disrupt working memory of the previous choice and reward. Behaviors in CC showed high proportions of win-stay and lose-switch choices, which could be regarded as "a noisy WSLS strategy." Poisson regression of neural spikes revealed encoding specifically in CC of the previous action and reward before action choice and prospective coding of WSLS action during action execution. A striking finding was that the DLS and M1 in the motor cortico-basal ganglia loop carry substantial WM information about previous choices, rewards, and their interactions, in addition to current action coding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.