Abstract
Numerous psychophysical studies have described perceptual learning as long-lasting improvements in perceptual discrimination and detection capabilities following practice. Where and how long-term plastic changes occur in the brain is central to understanding the neural basis of perceptual learning. Here, neurophysiological research using non-human primates is reviewed to address the neural mechanisms underlying visual perceptual learning. Previous studies have shown that training either has no effect on or only weakly alters the sensitivity of neurons in early visual areas, but more recent evidence indicates that training can cause long-term changes in how sensory signals are read out in the later stages of decision making. These results are discussed in the context of learning specificity, which has been crucial in interpreting the mechanisms underlying perceptual learning. The possible mechanisms that support learning-related plasticity are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.