Abstract

ABSTRACT The egg-laying behaviour of gastropod molluscs is controlled by peptidergic neuroendocrine cells and has provided an important experimental system for behavioural neurobiology. The genes that code for multiple peptides have been sequenced and the peptides themselves have been identified, thus enabling us to investigate how they act on the nervous system to produce the overt behavioural pattern (reviewed by Geraerts et al. 1988). The two animals that have been studied most extensively are the opisthobranch Aplysia californica and the pulmonate Lymnaea stagnalis. In both cases, the peptidergic neurones controlling egg laying are normally electrically silent (both in vivo and in vitro; Kupfermann, 1967; Pinsker and Dudek, 1977; Kits, 1980; Ter Maat et al. 1986) and produce multiple peptides (Rothman et al. 1983; Geraerts et al. 1985; Sigvardt et al. 1986), which are cleaved from a common protein precursor (Scheller et al. 1983; Vreugdenhil et al. 1988). Before egg laying, the cells produce a long-lasting discharge of action potentials (Pinsker and Dudek, 1977; Ter Maat et al. 1986). This electrical discharge initiates egg-laying behaviour, and during it the peptides (one of which initiates ovulation) are released into the blood. The demonstration, in Aplysia californica, that these peptides could have various effects on the activity of central neurones (reviewed by Mayeri and Rothman, 1985) led to the hypothesis that egg-laying behaviour is a neuroendocrine fixed action pattern controlled and coordinated by the concerted actions of the released peptides (Scheller and Axel, 1984). This hypothesis is also thought to apply to Lymnaea stagnalis (Vreugdenhil et al. 1988) because of the structural similarities between precursors of Aplysia californica and Lymnaea stagnalis egg-laying hormones. In this paper we investigate how the sequence of the various components of the egg-laying behaviour pattern is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.