Abstract

P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.

Highlights

  • Neuronal activities as measured with electroencephalogram (EEG)/MEG are the direct window for studying the living brain at work

  • They showed that the anterior cingulate cortex (ACC), left premotor area (PMA), inferior parietal lobule (IPL), and the primary sensory areas formed a network underlying the generation of P300 and that the ACC plays a crucial role in the top-down modulation of sensory processing

  • The somatosensory evoked potentials (SEPs) (i.e. P50, N80, and P200) were examined to ensure that (1) the haptic stimulus was successfully delivered in the standard condition and (2) the absence of this stimulus elicited P300 activity

Read more

Summary

Introduction

Neuronal activities as measured with electroencephalogram (EEG)/MEG are the direct window for studying the living brain at work. Downar et al have identified the neuroanatomical correlates underlying the detection of changes in the sensory environment using event-related functional magneticresonance imaging (fMRI) and a modified oddball paradigm [6] They concluded that a distributed, right-lateralized networkcomprising temporoparietal junction (TPJ), inferior frontal gyrus (IFG), insula and left cingulate and supplementary motor areas (CMA/SMA) as well as the primary sensory cortex (SI)–responds to changes in multiple sensory modalities and the subsequent involuntary attention shift. Crottaz-Herbette and Menon examined the attentional control network by using simultaneous fMRI and EEG data recorded while performing auditory and visual oddball attention tasks [7] They showed that the anterior cingulate cortex (ACC), left premotor area (PMA), inferior parietal lobule (IPL), and the primary sensory areas formed a network underlying the generation of P300 and that the ACC plays a crucial role in the top-down modulation of sensory processing. It remains unclear whether the passive conditions share the active P300-generating network architecture when no response is required

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.