Abstract

Whole-brain mapping is an effective approach to investigate which brain areas are activated by the exploration of a novel environment. Previous studies analyzing neuronal activity promoted by novelty focused mostly on one specific area instead of the whole brain and measured activation using cfos immunohistochemistry. In this study, we utilized TRAP2 mice exposed to a novel and familiar environment to examine neuronal activity in exploratory, learning, and memory circuits. We analyzed the behavior of mice during environment exploration. Brain tissue was processed using tissue clarification and neurons active during exploration of an environment were mapped based on the cfos expression. Neuronal activity after each experience were quantified in regions of interest. We observed increased exploratory behavior in mice exposed to a novel environment in comparison to familiar (170.5 s ± 6.47 vs. 112.5 s ± 9.54, p = 0.0001). Neuronal activity was significantly increased in the dentate gyrus (115.56 ± 53.84 vs. 32.24 ± 12.32, p = 0.02) during the exploration of a novel environment. Moreover, examination of the remaining regions of interest showed some increase in the number of active neurons in the novel condition, however, those differences were not statistically significant. Brief exposure to a novel environment results in increased exploratory behavior and significant neuronal activity in the dentate gyrus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.