Abstract
The purpose of this study was to examine single repetition characteristics and acute neuromuscular responses to typical hypertrophic (HL), maximal strength (MSL), and power (PL) loadings performed with two of the most common resistance modes; pneumatic and weight stack. Acute responses were assessed by measuring maximal voluntary contraction (MVC), corresponding quadriceps-EMG and resting and superimposed twitch torques. Activation level was calculated from the twitch torques.Decreases in MVC were greater during HL and MSL than during PL. During HL, resting twitch force decreased 8% (P<0.05) more on the weight stack than on the pneumatic device. Furthermore, loading using the weight stack caused reduced resting twitch force, activation level, and EMG-amplitude after MSL and PL (P<0.05–0.01).PL on the pneumatic device decreased MVC and rapid force production, while the respective PL on the weight stack device was specific to decreased rapid force production only. However, mean angular velocities and power of the repetitions were higher on the pneumatic device when using light loads.The present study showed that, at least in untrained subjects, the weight stack device induced greater levels of peripheral fatigue during HL. It also led to large central fatigue during MSL and PL. On the other hand, on the pneumatic device contraction velocity with low loads was higher compared to the weight stack device.Therefore, it is recommended that the resistance mode should be chosen according to the specific training goal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.