Abstract

While artificial intelligence, capable of readily addressing cognitive tasks, has transformed technologies and daily lives, there remains a huge gap with biological systems in terms of performance per energy unit. Neuromorphic computing, in which hardware with alternative architectures, circuits, devices, and/or materials is explored, is expected to reduce the gap. Antiferromagnetic spintronics could offer a promising platform for this scheme. Active functionalities of antiferromagnetic systems have been demonstrated recently and several works indicated their potential for biologically inspired computing. In this perspective, we look through the prism of these works and discuss prospects and challenges of antiferromagnetic spintronics for neuromorphic computing. Overview and discussion are given on non-spiking artificial neural networks, spiking neural networks, and reservoir computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.