Abstract
This study aimed to characterize the effect of mechanical stimuli on mesenteric afferent nerve signaling in the isolated rat jejunum in vitro. This was done to determine the effect of mechanical stresses and strains relative to nonmechanical parameters (neurogenic adaptation). Mechanical stimulations were applied to a segment of jejunum from 15 rats using ramp distension with water at three rates of distension, a relaxation test (volume maintained constant from initial pressure of 20 or 40 mmHg), and a creep test (pressure maintained constant). Circumferential stress and strain and the spike rate increase ratio were calculated for evaluation of afferent nerve activity during the mechanical stimulations. Ramp distension evoked two distinct phases of afferent nerve signaling as a function of circumferential stress or strain. Changing the volume distension rate did not change the stress-strain relationship, but faster distension rate increased the afferent firing rate (P < 0.05). In the stress relaxation test, the spike rate declined faster and to a greater extent than the stress. In the creep test, the spike rate declined, despite a small increase in the strain. Three classes of mechanosensitive single-afferent units (low, wide dynamic range, and high threshold units) showed different response profiles against stress and strain. Low-threshold units exhibited a near linear relationship against the strain (R(2) = 0.8095), whereas high-threshold units exhibited a linear profile against the stress (R(2) = 0.9642). The afferent response is sensitive to the distension speed and to the stress and strain level during distension. However, the afferent nerve response is not a simple function of either stress or strain. Nonmechanical time-dependent adaptive responses other than those related to viscoelasticity also play a role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.