Abstract

Neuromorphic computing algorithms based on Spiking Neural Networks (SNNs) are evolving to be a disruptive technology driving machine learning research. The overarching goal of this work is to develop a structured algorithmic framework for SNN training that optimizes unique SNN-specific properties like neuron spiking threshold using neuroevolution as a feedback strategy. We provide extensive results for this hybrid bio-inspired training strategy and show that such a feedback-based learning approach leads to explainable neuromorphic systems that adapt to the specific underlying application. Our analysis reveals 53.8, 28.8, and 28.2% latency improvement for the neuroevolution-based SNN training strategy on CIFAR-10, CIFAR-100, and ImageNet datasets, respectively in contrast to state-of-the-art conversion based approaches. The proposed algorithm can be easily extended to other application domains like image classification in presence of adversarial attacks where 43.2 and 27.9% latency improvements were observed on CIFAR-10 and CIFAR-100 datasets, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.