Abstract

Aims Neuroendocrine (NE) cells were thought to be post-mitotic and non-proliferative. But it was recently reported that NE cells express, and induce surrounding cells to express potent antiapoptotic proteins. We hypothesize that neuroendocrine differentiation (NED), a common phenomenon in prostate cancer, is related to chemoresistance in prostate cancer. Main methods Androgen-independent human prostate cancer DU145 and PC-3 cells were exposed to epidermal growth factor (EGF). MTT assays evaluated changes in chemoresistance after EGF treatment, and flow cytometry examined EGF-induced cell cycle changes in DU145 cells. Western blotting, real-time RT-PCR and transmission electron microscopy were utilized to confirm NED. Key findings After stimulation with EGF, DU145 and PC-3 cells exhibited stronger resistance to cisplatin. Flow cytometry showed that EGF stimulation substantially decreased the proportion of DU145 cells in G 1 phase. EGF treatment increased the expression of neuron-specific enolase, a marker of NED induction. Significance NED in prostate cancer is involved in the chemoresistance induced by EGF. EGF and/or the EGF receptor may be potential targets for medical intervention in chemo-resistant prostate cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.