Abstract

This manuscript describes neuromechanical modeling of the fruit fly Drosophila melanogaster in the form of a hexapod robot, Drosophibot, and an accompanying dynamic simulation. Drosophibot is a testbed for real-time dynamical neural controllers modeled after the anatomy and function of the insect nervous system. As such, Drosophibot has been designed to capture features of the animal’s biomechanics in order to better test the neural controllers. These features include: dynamically scaling the robot to match the fruit fly by designing its joint elasticity and movement speed; a biomimetic actuator control scheme that converts neural activity into motion in the same way as observed in insects; biomimetic sensing, including proprioception from all leg joints and strain sensing from all leg segments; and passively compliant tarsi that mimic the animal’s passive compliance to the walking substrate. We incorporated these features into a dynamical simulation of Drosophibot, and demonstrate that its actuators and sensors perform in an animal-like way. We used this simulation to test a neural walking controller based on anatomical and behavioral data from insects. Finally, we describe Drosophibot’s hardware and show that the animal-like features of the simulation transfer to the physical robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.