Abstract

Computer simulations of an extended version of a neural model of lightness perception [1,2] are presented. The model provides a unitary account of several key aspects of spatial lightness phenomenology, including contrast and assimilation, and asymmetries in the strengths of lightness and darkness induction. It does this by invoking mechanisms that have also been shown to account for the overall magnitude of dynamic range compression in experiments involving lightness matches made to real-world surfaces [2]. The model assumptions are derived partly from parametric measurements of visual responses of ON and OFF cells responses in the lateral geniculate nucleus of the macaque monkey [3,4] and partly from human quantitative psychophysical measurements. The model’s computations and architecture are consistent with the properties of human visual neurophysiology as they are currently understood. The neural model's predictions and behavior are contrasted though the simulations with those of other lightness models, including Retinex theory [5] and the lightness filling-in models of Grossberg and his colleagues [6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.