Abstract

Abnormalities of water homeostasis can be early expressions of neuronal dysfunction, brain atrophy, chronic cerebrovasculopathy and neurodegenerative disease. The aim of this study was to analyze the serum osmolality of subjects with cognitive impairment. One thousand and ninety-one consecutive patients attending the Alzheimer’s Evaluation Unit were evaluated with the Mini-Mental State Examination (MMSE), 21-Item Hamilton Depression Rating Scale (HDRS-21), Activities of Daily Living (ADL), Instrumental-ADL (IADL), Mini Nutritional Assessment (MNA), Exton-Smith Scale (ESS), and Cumulative Illness Rating Scale (CIRS). For each patient, the equation for serum osmolality developed by Khajuria and Krahn was applied. Five hundred and seventy-one patients had cognitive decline and/or depression mood (CD-DM) and 520 did not have CD-DM (control group). Patients with CD-DM were less likely to be male (p < 0.001), and were more likely to be older (p < 0.001), have a significant clear cognitive impairment (MMSE: p < 0.001), show the presence of a depressive mood (HDRS-21: p < 0.001) and have major impairments in ADL (p < 0.001), IADL (p < 0.001), MNA (p < 0.001), and ESS (p < 0.001), compared to the control group. CD-DM patients had a higher electrolyte concentration (Na+: p < 0.001; K+: p < 0.001; Cl−: p < 0.001), risk of dehydration (osmolality p < 0.001), and kidney damage (eGFR: p = 0.021), than the control group. Alzheimer’s disease (AD) patients showed a major risk for current dehydration (p ≤ 0.001), and dehydration was associated with the risk of developing a type of dementia, like AD or vascular dementia (VaD) (OR = 2.016, p < 0.001). In the multivariate analysis, the presence of dehydration state was associated with ADL (p < 0.001) and IADL (p < 0.001), but independently associated with age (r2 = 0.0046, p = 0.77), ESS (r2 = 0.0052, p = 0.54) and MNA (r2 = 0.0004, p = 0.48). Moreover, younger patients with dementia were significantly more dehydrated than patients without dementia (65–75 years, p = 0.001; 76–85 years, p = 0.001; ≥86 years, p = 0.293). The hydromolecular hypothesis intends to explain the relationship between dehydration and cognitive impairment in older patients as the result of protein misfolding and aggregation, in the presence of a low interstitial fluid volume, which is a defect of the microcirculation. Defective proteins were shown to impair the amount of information in brain biomolecular mechanisms, with consequent neuronal and synaptic damage.

Highlights

  • The regulation of water balance is governed by a feedback mechanism involving the function and interaction of different regions of the central nervous system and the kidneys [1,2,3]

  • cognitive decline and/or depression mood (CD-DM) patients showed a major impairment in Activities of Daily Living (ADL) (4.14 vs. 6.00, p < 0.001), IADL (3.31 vs. 8.00, p < 0.001), Mini Nutritional Assessment (MNA) (23.02 vs. 24.26, p < 0.001), and Exton-Smith Scale (ESS) (17.32 vs. 19.32, p < 0.001) compared to individuals in the control group

  • The two groups did not differ in Cumulative Illness Rating Scale (CIRS) scores (p = 0.241), or glucose (p = 0.903), urea (p = 0.571), and Scr (p = 0.107)

Read more

Summary

Introduction

The regulation of water balance is governed by a feedback mechanism involving the function and interaction of different regions of the central nervous system and the kidneys [1,2,3]. Plasma osmolality indicates the level of body hydration and hypothalamus osmoreceptors detect and are sensitive to its variations [4]. Vasopressin binds receptors in the kidney that decrease the excretion of water, and subsequently, a greater fraction of filtered water is returned to the blood. This process lowers the plasma osmolality, reduces the stimulus for vasopressin secretion and thirst and completes the feedback loop [5]. Failure of this mechanism, which is commonly observed in hospitalized patients, results in a variety of water balance disorders. More recent evidence has clarified that the aging process is commonly related to multiple abnormalities in water homeostasis, highlighting its effects on morbidity, cognition, osteoporosis, fractures, gait instability, and mortality [4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.