Abstract

Although substantial knowledge of mercury toxicity in fish has been assembled; until now, studies investigating the toxic impacts in Nile tilapia (Oreochromis niloticus) following dietary exposure to organic methyl mercury (MeHg) are less prolific. Accordingly, the current study aimed to evaluate the impacts of MeHg on neurobehavioral and immune integrity in Nile tilapia after dietary exposure. Two hundred and twenty-five juvenile Nile tilapia (19.99 ± 0.33 g) were allocated into five groups in triplicates (15 fish/replicate). G1, G2, G3, G4, and G5. O. niloticus were fed corresponding basal diets containing 0, 0.5, 1, 1.5, and 2 mg/kg diet MeHg chloride (MeHgCl) daily for 30 days, zero value represented the control G1 group. The results showed that MeHg induced significant alterations in O. niloticus behavior, the swimming behavior was significantly decreased, while scratching, biting, and fin tugging behaviors were significantly augmented. Moreover; chasing, mouth pushing, and butting behaviors were significantly increased in all the exposed groups. MeHg significantly decreased brain acetylcholine esterase (AChE) and serum immunoglobulin M (IgM) levels in all the exposed groups. Meanwhile, serum levels of lysozyme (LYZ), nitric oxide (NO), superoxide dismutase (SOD) malondialdehyde (MDA), protein carbonyl (PCO), and 8 hydroxy 2 deoxyguanosine (8OH2dG) were significantly elevated in all the exposed groups except for serum reduced glutathione (GSH) content was significantly decreased implying oxidative stress (OS), lipid peroxidation (LPO), protein, DNA damage and impaired immune response of the exposed tilapia. MeHg significantly altered transcriptional expression of immune-related genes including (TNF-α, IL-1β, and IL-8, and IL-10) in all the exposed groups. From the obtained outcomes, the present research is the premier to investigate that dietary MeHg exposure in O. niloticus significantly induced neurobehavioral and immune defense impairments in a dose-related manner. This study exhibits that dietary MeHg may pose a potential threat to the O. niloticus populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.