Abstract

Previous work has demonstrated that the cortical sub-division of the inferior colliculus is capable of seizure genesis, so the present studies delineated the neuroanatomical extent of this seizure genesis using two mapping techniques, [ 14C]2-deoxyglucose (2-DG) uptake and electrical stimulation. When 4 inferior collicular seizures were elicited over a 5 min period, the stimulated side of the brain showed highly selective increases in the [ 14C]2-DG uptake in comparison to the unstimulated side. Although the substantial change in [ 14C]2-DG uptake occurred over the entire inferior collicular cortex, electrical stimulation mapping delineated a specific area capable of seizure genesis within the inferior collicular cortex. The electrical stimulation also identified a number of regions that would support electrically dependent seizure behaviors: the cuneiform nucleus, the ventrolateral inferior colliculus, portions of the dorsal central gray, and the peripeduncular nucleus. In concert, marked unilateral increases in [ 14C]2-DG uptake were found on the stimulated side in the peripeduncular/substantia nigra lateralis area, the medial geniculate and a specific region of the dorsal central gray. These studies verify the asymmetric nature of inferior collicular seizure genesis, identify areas of seizure modulation, and delineate a region in the inferior collicular cortex that modulates sensory-motor integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.