Abstract

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.

Highlights

  • Important ecological advantages are conferred to a diverse range of animals that evolved a finely tuned venom system adapted for predation, defense, and competitor deterrence purposes

  • Six medications obtained from venom proteins and derivatives – namely captopril (Capoten®), eptifibatide (Integrilin®), tirofiban (Aggrastat®), bivalirudin (Angiomax®), ziconitide (Prialt®), and exenatide (Byetta®) – have been approved by the U.S Food and Drug Administration (FDA), targeting hypertension, acute coronary syndromes, coagulation during surgery, chronic pain, and type 2 diabetes [3]

  • Novel technologies (i.e.: proteomics approach) have become key components for bioprospecting, unveiling new molecular components in venoms that provide blueprints to treat a wider variety of disorders, such as neurological diseases [4]

Read more

Summary

Introduction

Important ecological advantages are conferred to a diverse range of animals that evolved a finely tuned venom system adapted for predation, defense, and competitor deterrence purposes. From the evolutionary point of view, the prey–predator relationship applies constant selection pressure on toxin efficacy by demanding high specificity and potency for their molecular targets, primarily in the cardiovascular and nervous systems. These features are not commonly found in other natural or synthetic small molecules, making animal toxins extremely valuable as pharmacological tools [1, 2]. A series of venom-derived peptides and proteins are currently in preclinical development while some others are undergoing clinical trials for their applications in the treatment of cancer, chronic pain, congestive heart failure, epilepsy, myocardial infarction, stroke, and multiple sclerosis [1,2,3]. Novel technologies (i.e.: proteomics approach) have become key components for bioprospecting, unveiling new molecular components in venoms that provide blueprints to treat a wider variety of disorders, such as neurological diseases [4]

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.