Abstract
The renin angiotensin system (RAS) has been studied for its effects on various neurological disorders. The identification of functional receptors for Ang-(1–7) and Ang II peptides in astrocytes highlights the physiological modulation and the important role of these cells in the central nervous system. The present study aims to understand the role of RAS peptides, particularly Ang-(1–7) and Ang II, in the secretion of trophic factors by astrocytes and their effects on hippocampal neurons. We used primary cultures of astrocytes and neurons from the hippocampus of either sex neonate of Wistar strain rats. In the present study, we demonstrated that the treatment of astrocytes with Ang-(1–7) acts on the modulation of these cells, inducing reactive astrogliosis, identified through the increase in the expression of GFAP. Furthermore, we obtained a conditioned medium from astrocytes treated with Ang-(1–7), which in addition to promoting the secretion of neurotrophic factors essential for neuronal-glial interactions that are fundamental for neuritogenesis and neuronal survival, showed a neuroprotective effect against glutamatergic excitotoxicity. In turn, Ang II does not exhibit the same effects on astrocyte modulation, exacerbating deleterious effects on brain RAS. Neuron-astrocyte interactions have been shown to be an integral part of the central effects mediated by RAS, and this study has significantly contributed to the understanding of the biochemical mechanisms involved in the functioning of this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.