Abstract

Islet neogenesis-associated protein (INGAP) peptide is a candidate therapeutic for diabetes and corrects sensory dysfunction in experimental diabetes in mice. In this study, we investigated the mechanism of action by which INGAP peptide promotes neurite outgrowth in sensory neurons of the dorsal root ganglia. Treatment of dorsal root ganglia primary dispersed cultures with INGAP peptide led to the displacement of fluorescently labeled forskolin from adenylate cyclase, the cyclic AMP-generating enzyme that has been implicated in neuritogenesis. The addition of forskolin or dibutyryl cyclic AMP enhanced the effects of INGAP peptide on neurite outgrowth in dorsal root ganglia explant cultures. Furthermore, pharmacological inhibition of adenylate cyclase with SQ22,536 or of protein kinase A with H89 or KT5720 significantly reduced the neurite-promoting effects of INGAP peptide. These results suggest that INGAP peptide-induced neurite outgrowth in the dorsal root ganglia partially involves cyclic AMP-dependent activation of protein kinase A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.